

 ARL-CR-0787 ● NOV 2015

 US Army Research Laboratory

Constraint Optimization Literature Review

prepared by Peter J Schwartz
ORSA Corporation
1003 Old Philadelphia Road, #103
Aberdeen, MD

under contract W91CRB-11D-0007

Approved for public release; distribution is unlimited.

NOTICES

Disclaimers

The findings in this report are not to be construed as an official Department of the
Army position unless so designated by other authorized documents.

Citation of manufacturer’s or trade names does not constitute an official
endorsement or approval of the use thereof.

Destroy this report when it is no longer needed. Do not return it to the originator.

 ARL-CR-0787 ● NOV 2015

 US Army Research Laboratory

Constraint Optimization Literature Review

prepared by Peter J Schwartz
ORSA Corporation
1003 Old Philadelphia Road, #103
Aberdeen, MD

under contract W91CRB-11D-0007

Approved for public release; distribution is unlimited.

ii

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the
data needed, and completing and reviewing the collection information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing the
burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302.
Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid
OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)

November 2015
2. REPORT TYPE

Final
3. DATES COVERED (From - To)

June 2013–December 2013
4. TITLE AND SUBTITLE

Constraint Optimization Literature Review
5a. CONTRACT NUMBER

W91CRB-11D-0007
5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)

Peter J Schwartz
5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

ORSA Corporation
1003 Old Philadelphia Rd., #103
Aberdeen, MD 21001

8. PERFORMING ORGANIZATION REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

US Army Research Laboratory
ATTN: RDRL-CIH-S
Aberdeen Proving Ground, MD 21005-5067

10. SPONSOR/MONITOR'S ACRONYM(S)

11. SPONSOR/MONITOR'S REPORT NUMBER(S)

ARL-CR-0787

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.

13. SUPPLEMENTARY NOTES

14. ABSTRACT

The Constraint Optimization Problem (COP) is a commonly used mathematical formalism that can express many real-world
situations. When the COP contains discrete variables, however, the number of combinations of variable assignments to
consider is exponential in the number of variables. For example, adding just 20 binary variables to a COP multiplies the
number of combinations to consider by over one million. This means that even if standard hardware and software efficiency
techniques can provide orders of magnitude in increased speed, they can become quickly overwhelmed as problems become
larger. A variety of techniques have been developed to address the complexity of COPs. Unfortunately, the COP is
nondeterministic polynomial time hard (NP-hard) in general, meaning that for any algorithm there exists a problem instance
for which the runtime is exponential in the size of the problem input. This report reviews the literature on COPs.

15. SUBJECT TERMS

high-performance computing, mobile ad hoc network, optimization, constraint, satisfaction

16. SECURITY CLASSIFICATION OF:
17. LIMITATION
 OF
 ABSTRACT

UU

18. NUMBER
 OF
 PAGES

44

19a. NAME OF RESPONSIBLE PERSON

Peter J Schwartz
a. REPORT

Unclassified
b. ABSTRACT

Unclassified
c. THIS PAGE

Unclassified
19b. TELEPHONE NUMBER (Include area code)

410-306-1313
 Standard Form 298 (Rev. 8/98)
 Prescribed by ANSI Std. Z39.18

Approved for public release; distribution is unlimited.

iii

Contents

1. Introduction 1

2. Constraint Optimization Problems 1

2.1 Constraint Satisfaction Problems 1

2.2 Constraint Optimization Problems 3

3. Constraint Optimization Algorithms 9

3.1 Constraint Satisfaction Algorithms 9

3.1.1 Brute-Force search 9

3.1.2 Constraint Propagation 10

3.1.3 Depth-First Search 13

3.1.4 Local Search 18

3.2 Constraint Optimization Algorithms 22

3.2.1 Constraint Propagation 23

3.2.2 Depth-First Search 23

3.2.3 Local Search 26

4. Conclusions 27

5. References 28

List of Symbols, Abbreviations, and Acronyms 36

Distribution List 37

Approved for public release; distribution is unlimited.

iv

INTENTIONALLY LEFT BLANK.

Approved for public release; distribution is unlimited.

1

1. Introduction

The Constraint Optimization Problem (COP) is a commonly used mathematical
formalism that can express many real-world situations. When the COP contains
discrete variables, however, the number of combinations of variable assignments
to consider is exponential in the number of variables. For example, adding just 20
binary variables to a COP multiplies the number of combinations to consider by
over one million. This means that even if standard hardware and software efficiency
techniques can provide orders of magnitude in increased speed, they can become
quickly overwhelmed as problems become larger.

A variety of techniques have been developed to address the complexity of COPs.
These techniques combine search algorithms with constraint propagation to try to
find good solutions quickly without testing each possible combination of variable
assignments. Some approaches are systematic and guaranteed to produce an
optimal solution while others give up optimality in an effort to find near-optimal
solutions faster.

Unfortunately, COP is nondeterministic polynomial time hard (NP-hard) in
general, meaning that for any algorithm there exists a problem instance for which
the runtime is exponential in the size of the problem input. In practical terms, this
means that even modestly sized problems can be too complex to solve in a
reasonable amount of time even for the most sophisticated algorithms.

This report reviews the literature on COPs. Section 2 defines the Constraint
Satisfaction Problem (CSP) and extends it to define several COP variants. Section
3 describes a variety of algorithms and techniques used to solve CSPs and COPs.
Section 4 summarizes the findings. Someone who needs to solve a CSP or COP
should find this report useful for choosing an effective representation or an efficient
algorithm.

2. Constraint Optimization Problems

2.1 Constraint Satisfaction Problems

The CSP (Montanari 1974) is a very common problem representation in the
artificial intelligence literature (Wallace 1996) and serves as the basis of the COP.
It is useful for describing problems in which a set of decisions must be made, but
because these decisions can interact with one another, not all combinations of
choices are valid. The problem is to find any combination of choices that is valid
or to prove that no such combination exists, and this problem is NP-complete (i.e.,

Approved for public release; distribution is unlimited.

2

when it is both in NP and NP-hard), in general. In a CSP, each decision to be made
is called a variable, each possible choice for each decision is called a value, the
interactions between decisions are called constraints, and combinations of choices
are called assignments. These terms are further described in the following
definitions.

Definition 2-1. CSP: Given a set of variables V, a set of domains D, where each
domain Di ∈ D is a set of possible values for a variable vi ∈ V, and a set of
constraints C over the variables of V, produce an assignment of values to variables
that satisfies all of the constraints.

Definition 2-2. Constraint: Given a CSP with variables V, domains D, and
constraints C, a constraint is a relation over the set of possible assignments to a
subset of the variables of V. This subset of variables is called the scope of the
constraint. Each possible assignment to the variables in the scope is called a tuple.
A constraint is therefore a relation that defines which tuples over the scope of the
constraint satisfy it and which tuples violate it. A constraint c1 is tighter than another
constraint c2 if the set of complete assignments that satisfy c1 is a subset of the set
of complete assignments that satisfy c2.

Definition 2-3. Assignment: Given a CSP with variables V, domains D, and
constraints C, an assignment is a mapping of variables of V to values in the
corresponding domains of D. A complete assignment specifies a value for every
variable of V, and a partial assignment specifies values for a subset of the variables
of V. A solution is a complete assignment that does not violate any of the constraints
of C.

In a special case of CSP, every variable has a domain with only 2 values, TRUE
and FALSE. This type of variable is known as a Boolean variable. A CSP of
Boolean variables is known as a Boolean satisfiability (SAT) problem.

Definition 2-4. SAT: Given a set of variables V, each with the domain {TRUE,
FALSE}, and a set of constraints C over the variables of V, produce an assignment
of values to variables that satisfies all of the constraints.

The constraints of an instance of SAT are generally described as a set of Boolean
clauses.

Definition 2-5. Boolean clause: A clause is a disjunction of literals. A literal is
either a Boolean variable or its negation. If B is a Boolean variable, the negation of
B is written ¬B, and ¬B evaluates to the logical opposite of B (that is, if B = TRUE,
then ¬B = FALSE, and if B = FALSE, then ¬B = TRUE). If B and C are Boolean
variables, the disjunction of B and C is written B ∨ C, and B ∨ C evaluates to the

Approved for public release; distribution is unlimited.

3

logical “or” of B and C (that is, B ∨ C = TRUE if B = TRUE or if C = TRUE, and
B ∨ C = FALSE if B = FALSE and C = FALSE).

Like CSP, SAT is NP-complete, in general. One attribute of all NP-complete
problems is the fact that it is possible to convert an instance from any NP-complete
representation to any other NP-complete representation in polynomial time. In
particular, any finite-domain CSP (even those with variable domains of more than
2 values) can be transformed into an equivalent instance of SAT in polynomial
time. This can be accomplished by creating one Boolean variable for each value in
the domain of each variable in the original CSP. For example, suppose the original
CSP contains a variable x with the domain {A, B, C}. First, create one Boolean
variable for each value in the domain; call them xA, xB, and xC. For each Boolean
variable xi, xi = TRUE in the SAT transformation represents x = i in the original
CSP.

A set of clauses in the SAT transformation can force exactly one value to be
assigned to each variable of the original CSP. In this example, this clause requires
at least one of the values to be assigned: xA ∨ xB ∨ xC.

It is possible to prevent more than one of the values from being assigned by adding
one clause for each pair of values: ¬xA ∨ ¬xB, ¬xA ∨ ¬xC, and ¬xB ∨ ¬xC.

Finally, it is possible to encode the original CSP constraints as clauses over the
Boolean variables. Suppose that the original CSP contains a second variable y with
the domain {A, B, C} and the constraint {x = A, y = B} is an illegal assignment.
This can be represented in the SAT transformation with a clause that forces any
solution to avoid at least one of these variable assignments: ¬xA ∨ ¬yB.

Altogether, this transformation is linear in the size of the constraints of the original
CSP and quadratic in the size of its largest variable domain.

2.2 Constraint Optimization Problems

CSPs can be extended to represent not only which combinations of choices are
valid, but also which combinations of choices are preferred. The problem is to find
a combination of choices that not only satisfies the constraints, but also optimizes
the preferences. Such problems are known collectively as COPs.

Definition 2-6. COP: Given a set of variables V, a set of domains D, where each
domain Di ∈ D is a set of possible values for a variable vi ∈ V, a set of constraints
C over the variables of V, and an ordering ≼ over assignments, produce an
assignment of values to variables that satisfies all of the constraints and is optimal
according to the ordering. If A and A’ are assignments, A ≼ A’ means that A is

Approved for public release; distribution is unlimited.

4

preferred or equivalent to A’. An assignment A is optimal if A ≼ A’ for all
assignments A’.

It is common practice to define the preference ordering ≼ by mapping consistent
assignments to a set of objects with a known ordering.

Definition 2-7. Objective function: Given a set S of valid solutions to a COP with
preference ordering ≼P, and given a set of objects O with a known ordering ≼O, an
objective function 𝑓𝑓 : S → O maps each solution of S to an object of O such that for
any s1, s2 ∈ S, 𝑓𝑓(s1) ≼O 𝑓𝑓(s2) if and only if s1 ≼P s2.

Objective functions are often defined as “scoring functions”, in which each solution
is mapped to a real number and the objective is to either minimize or maximize the
score according to the ≤ or ≥ ordering on the real number line.

Since COP is a generalization of CSP and CSP is NP-complete, COP is generally
NP-hard. The exception occurs when restrictions are imposed on the types of
variables, constraints, or preferences that can be expressed. These restrictions
define special classes of COP.

One of the simplest forms of COP is Max-CSP (Freuder and Wallace 1992).

Definition 2-8. Max-CSP: Given a set of variables V, a set of domains D where
each domain Di ∈ D is a set of possible values for a variable vi ∈ V, and a set of
constraints C over the variables of V, produce an assignment of values to variables
that maximizes the number of satisfied constraints.

Max-CSP expresses the basic preference of satisfying more constraints rather than
fewer. In other words, Max-CSP is a special case of COP in which the partial
ordering is defined such that A ≼ A’ if the number of constraints violated by A is
less than or equal to the number of constraints violated by A’. Max-CSP is
approximately (APX)-complete, which means that it is NP-hard and that it can be
approximated to within a constant multiple of optimal in polynomial time, but also
that there is no polynomial-time approximation scheme unless P = NP.

A Max-CSP representation can be more useful than a CSP representation when the
problem is over-constrained, meaning that it is impossible to satisfy all of the
constraints simultaneously. A CSP algorithm would simply state that no solution
exists. A Max-CSP algorithm would produce an assignment that satisfies as many
of the constraints as possible. Barták et al. (2003) propose finding a maximal
consistent assignment, which is a consistent assignment of as many of the variables
as possible, leaving the remaining variables unassigned; instead of minimizing the
number of violated constraints, the problem here is to minimize the number of
unassigned variables.

Approved for public release; distribution is unlimited.

5

A closely related problem is the Partial Max-CSP.

Definition 2-9. Partial Max-CSP: Given a set of variables V, a set of domains D,
where each domain Di ∈ D is a set of possible values for a variable vi ∈ V, a set of
constraints C over the variables of V, and a partitioning of C into CH (the hard
constraints) and CS (the soft constraints), produce an assignment of values to
variables that satisfies all of the hard constraints of CH and maximizes the number
of satisfied soft constraints of CS.

In Partial Max-CSP some of the constraints are hard, meaning that they must be
satisfied, and some of the constraints are soft, meaning that they do not necessarily
need to be satisfied. Partial Max-CSP is therefore a generalization of both CSP and
Max-CSP. CSP can be thought of as a special case of Partial Max-CSP in which all
of the constraints are hard, and Max-CSP can be thought of as a special case of
Partial Max-CSP in which all of the constraints are soft.

As described in Section 2.1, SAT is a special case of CSP that allows for special-
purpose efficiency techniques. In the next section it will be shown that many COP
solvers are based on CSP algorithms. To take advantage of the special-purpose
efficiency techniques, some of these COP solvers employ a SAT encoding of an
optimization problem. Max-SAT and Partial Max-SAT are special cases of Max-CSP
and Partial Max-CSP, respectively, in which all of the variables are Boolean
variables.

Definition 2-10. Max-SAT: Given a set of Boolean variables V and a set of clauses
C over the variables of V, produce an assignment of values to variables that
maximizes the number of satisfied clauses.

Definition 2-11. Partial Max-SAT: Given a set of Boolean variables V, a set of
clauses C over the variables of V, and a partitioning of C into CH (the hard clauses)
and CS (the soft clauses), produce an assignment of values to variables that satisfies
all of the hard clauses of CH and maximizes the number of satisfied soft clauses of
CS.

Partial Max-SAT is a generalization of both SAT and Max-SAT. SAT is a special
case of Partial Max-SAT in which all of the clauses are hard, and Max-SAT is a
special case of Partial Max-SAT in which all of the clauses are soft.

In all of these variations of Max-CSP, it is assumed that all of the soft constraints
are equally important. That is, violating one constraint is as bad as violating any
other constraint. This assumption does not always hold in the real world. To
represent the relative importance of satisfying constraints or the relative cost of
violating them, the Weighted CSP (WCSP) assigns each constraint a real-valued

Approved for public release; distribution is unlimited.

6

weight. Similarly, Weighted SAT (WSAT) assigns a real-valued weight to each
clause. Weighted Partial Max-SAT (WP Max-SAT) (Creignou et al. 2001) divides
the clauses into hard and soft clauses and assigns a weight to each soft clause.

Definition 2-12. WCSP: Given a set of variables V, a set of domains D, where each
domain is a set of possible values for a variable of V, a set of constraints C over the
variables of V, and a weighting function from constraints to real numbers W: C →
ℝ, produce an assignment of values to variables that minimizes the sum of the
weights of the violated constraints.

Definition 2-13. WSAT: Given a set of Boolean variables V, a set of clauses C over
the variables of V, and a weighting function from clauses to real numbers W: C → ℝ,
produce an assignment of values to variables that minimizes the total weight of the
violated clauses.

Definition 2-14. WP Max-SAT: Given a set of Boolean variables V, a set of clauses
C over the variables of V, a partitioning of C into CH (the hard clauses) and CS (the
soft clauses), and a weighting function from soft clauses to real numbers W: CS →
ℝ, produce an assignment of values to variables that satisfies all of the hard clauses
of CH and minimizes the sum of the weights of the violated soft clauses.

Max-CSP is a special case of WCSP in which each constraint is assigned an equal
weight. Partial Max-CSP can also be represented as a special case of WCSP in
which all of the hard constraints are assigned infinite weight and all of the soft
constraints are assigned the same finite weight. Similarly, WSAT and Partial Max-
SAT are special cases of WP Max-SAT.

Other formalisms use real numbers to represent various aspects of COPs but
interpret these values differently. Fuzzy CSPs (FCSPs) (Ruttkay 1994), for
example, assign a real number to each tuple within a constraint to represent the
degree to which the tuple satisfies the constraint.

Definition 2-15. FCSP: Given a set of variables V, a set of domains D, where each
domain is a set of possible values for a variable of V, a set of constraints C over the
variables of V, and a fuzzy relation function from tuples to real numbers F: C → [0,
1], produce an assignment of values to variables that maximizes how well the
constraints are satisfied in total. The fuzzy relation function F represents how well
each tuple satisfies a constraint.

CSP is a special case of FCSP in which the fuzzy relation F maps every tuple to
either 1.0 (meaning that the tuple satisfies the constraint completely) or zero
(meaning that the tuple fails to satisfy the constraint whatsoever).

Approved for public release; distribution is unlimited.

7

Another representation that assigns real numbers is the Probabilistic CSP (PCSP)
(Fargier and Lang 2005). The PCSP assumes that if the actual constraints of a CSP
are uncertain, given a set of constraints, the actual CSP will contain some of those
constraints but not others. Each constraint of a PCSP is therefore given a probability
that it will need to be satisfied in the actual problem.

Definition 2-16. PCSP: Given a set of variables V, a set of domains D, where each
domain is a set of possible values for a variable of V, a set of constraints C over the
variables of V, and a probability function from constraints to real numbers P: C →
[0, 1], produce an assignment of values to variables that minimizes the overall
probability of a constraint violation. The probability function P represents the
likelihood that the constraint will need to be satisfied in the actual problem.

CSP is a special case of PCSP in which the probability function P maps every
constraint to either 1.0 (meaning that the constraint will certainly appear in the
actual problem) or zero (meaning that the constraint will certainly not appear in the
actual problem). Even though FCSPs and PCSPs have a very similar form, they
have very different interpretations. Bistarelli et al. (1996) point out that an FCSP
can be cast as a PCSP and vice versa.

With so many alternative interpretations and representations of COPs, it can be
difficult to understand the relationships between them. To describe the theoretical
relationships between many of these representations, Bistarelli et al. (1996) present
the Valued CSP (VCSP), based on ordered monoids, and Semiring-based CSP
(SCSP), based on c-semirings. Ordered monoids and c-semirings are abstract
algebraic constructs that describe various properties that impose some notion of an
ordering among the elements of a set. When applied to a CSP, these properties
define how to combine constraints and compare assignments against one another.

Definition 2-17. VCSP: This is a CSP in which each constraint is given a value, an
ordering operator defines a total ordering over the values, and a combination
operator describes how values on constraints must be combined. The values and
operators of a VCSP must follow the structure of an ordered monoid. The value of
a constraint corresponds to its importance; informally, it is the cost of violating the
constraint. The set of possible values are not necessarily numbers on a number line,
so the ordering operator defines which values are larger and smaller. An assignment
of values to variables (whether partial or complete) might violate a set of
constraints, so the combination operator defines how the values of those violated
constraints can be combined into a value for the assignment.

Approved for public release; distribution is unlimited.

8

Special cases of VCSP include WCSP, FCSP, and PCSP. The authors also define
new type of COP that they call the Lexicographic CSP, which combines aspects of
WCSP and PCSP.

Definition 2-18. SCSP: This is a CSP in which each tuple is given a value, an
ordering operator defines a partial ordering over the values, and a combination
operator describes how values on tuples must be combined. The values and
operators of an SCSP must follow the structure of a c-semiring. The value of a tuple
corresponds to its importance; informally, it is the amount gained by including the
tuple in an assignment as a subset of the assignment’s variable bindings. The set of
possible values are not necessarily numbers on a number line, so the ordering
operator defines which values are larger and smaller. An assignment of values to
variables (whether partial or complete) might contain several subtuples within it,
so the combination operator defines how the values of those subtuples can be
combined into a value for the assignment.

As with VCSP, special cases of SCSP include WCSP, FCSP, and PCSP. The
authors also define new type of COP that they call the Egalitarianism and
Utilitarianism CSP, which combines aspects of WCSP and FCSP.

The VCSP and SCSP are closely related but not equivalent. Bistarelli et al. (1996)
prove that VCSP and SCSP are only equivalent if the ordering operators of both
impose a total ordering.

Another complication of optimization problems is introduced when multiple
objectives are competing against one another. Such a problem can be expressed as
a Multiobjective Optimization Problem (MOP) (Sawaragi et al. 1985).

Definition 2-19. MOP (also called Multi-Criteria or Multi-Attribute Optimization
Problem): Given a set of variables V, a set of domains D, where each domain is a
set of possible values for a variable of V, a set of constraints C over the variables
of V, and a set of objective functions O, produce an assignment of values to
variables that simultaneously optimizes each of the objective functions.

The major hurdle to overcome when dealing with MOPs is the fact that changing
an assignment to make it more optimal according to one objective function often
makes it less optimal according to other objective functions. One approach to this
issue is to combine all of the objective functions into a single aggregate objective
function (AOF). A common AOF assigns a weight to each individual objective
function and optimizes the weighted sum. Each weight expresses the relative
importance of the objective function, similar to the way weights within a WCSP
express the relative importance of constraints. The difficulty with the AOF
approach lies in identifying a meaningful way to combine the individual objective

Approved for public release; distribution is unlimited.

9

functions. After the objective functions are combined, the problem can be expressed
using one of the other COP formalisms, such as VCSP or SCSP, and solved using
standard techniques.

An alternative approach is to produce an assignment that does not optimize for all
objective functions but is instead Pareto optimal (Pareto 1906).

Definition 2-20. Pareto optimal (also called Pareto efficient): An assignment is
Pareto optimal relative to a set of objective functions O if it is impossible to change
the assignment in a way that increases its optimality according to one objective
function without simultaneously decreasing its optimality according to another
objective function. The Pareto frontier is the set of assignments that are Pareto
optimal.

By seeking a solution that is Pareto optimal, it is not necessary to devise a scheme
that combines all of the objective functions, as with AOF. The issue with Pareto
optimality, however, is that the set of assignments that are Pareto optimal can often
be quite large. In practice, preferences often exist between assignments that are
Pareto optimal but are not captured in the problem representation.

3. Constraint Optimization Algorithms

3.1 Constraint Satisfaction Algorithms

3.1.1 Brute-Force search

Several methods exist for solving an instance of CSP. The most straightforward
method is a brute-force search, which simply tests every possible complete
assignment of values to variables until either an assignment is found that satisfies
all of the constraints or the set of all possibilities is exhausted. For finite-domain
CSPs, brute-force search is easy to implement, sound (meaning that the result is
guaranteed to be correct), complete (meaning that it is guaranteed to eventually
terminate and give a result), and systematic (meaning that it will not test the same
assignment more than once).

In practice, however, brute-force search can be very inefficient. The number of
complete assignments is exponential in the number of variables, and if a CSP has
no solution, then brute-force search must test every single complete assignment
before terminating. Brute-force search should generally only be considered when
the number of variables is very low or when the number of solutions is very high.

Approved for public release; distribution is unlimited.

10

3.1.2 Constraint Propagation

A second approach to solving a CSP is constraint propagation, the process of
inferring additional constraints based on the set of constraints given in the problem
description. The constraints that are given in the problem description are known as
explicit constraints; implicit constraints are the constraints that are implied by the
explicit constraints but not listed explicitly. Constraint propagation is therefore the
process of deducing the implicit constraints based on the explicit constraints.

If a CSP contains n variables, it is possible to identify 2n unique subsets of variables.
A constraint (whether explicit or implicit) exists over every subset of variables, so
it is possible to define an exponential number of constraints. Of these constraints,
n are unary constraints, each of which is defined over a single variable. One of these
constraints is the global constraint, which is defined over the complete set of
variables.

Many forms of propagation exist, but all of them operate by iteratively tightening
the set of constraints. A constraint is tightened by removing a tuple from the set of
tuples that satisfy the constraint. A tuple can safely be removed from the satisfying
set if it can be proved that the tuple does not have support.

Definition 3-1. Support: A tuple t1 of constraint c1 is supported by a tuple t2 of
constraint c2 if either the scope of c2 is a subset of the scope of c1 and the individual
variable-value pairs of t2 are a subset of the variable-value pairs of t1, or if the scope
of c2 is a superset of the scope of c1 and the individual variable-value pairs of t2 are
a superset of the variable-value pairs of t1.

Support is reciprocal: Tuple t1 supports tuple t2 if and only if t2 supports t1.

A CSP constraint propagation algorithm repeatedly removes tuples from
constraints if they have no support. Many propagation algorithms are both sound
and complete. If the propagation process is sound and complete, when it is unable
to remove any more tuples, it has proved that at least one solution exists, and when
it has removed all of the tuples from any constraint, it has proved that no solution
exists. The remainder of this section presents constraint propagation techniques for
finite-domain CSPs. Constraint propagation techniques also exist for CSPs with
continuous variable domains.

The most basic form of constraint propagation is node consistency (Mackworth
1977), which simply ensures that all of the unary constraints are satisfied. In
practice, the constraints of a CSP might be imposed for different reasons or might
come from different sources. Node consistency boils down to the process of
collecting the unary constraints from different sources into a single representation
to ensure that there exists at least one value that might be assigned to each variable.

Approved for public release; distribution is unlimited.

11

With n variables and a maximum domain size of k, node consistency can be
enforced in O(nk) time.

Arc consistency (AC) (Mackworth 1977) extends this idea to pairs of variables by
removing any tuple from a binary constraint (constraints over 2 variables) that does
not have support from either of the 2 unary constraints that could support it. AC-1
(Mackworth 1977), the basic algorithm for enforcing AC, requires O(n3k3) time,
where n is the number of variables and k is the maximum domain size. AC-3
(Mackworth 1977) uses a queue to reduce this to O(n2k3) time. AC-4 (Mohr and
Henderson 1986) uses a complex counting scheme and is a provably optimal
algorithm in the worst case, requiring O(n2k2) time, but AC-3 is often faster in
practice.

Path consistency (Mackworth 1977) continues in this manner by considering sets
of 3 variables. Assume there are 3 variables, x1, x2, and x3, and 3 binary constraints
between them with scopes {x1, x2}, {x2, x3}, and {x1, x3}. Assume that the partial
assignment {x1 = v1, x2 = v2} satisfies the constraint over {x1, x2}. If there is no value
v3 in the domain of x3 such that the tuples {x1 = v1, x3 = v3} and {x2 = v2, x3 = v3}
both satisfy their respective constraints, it is impossible to extend the partial
assignment {x1 = v1, x2 = v2}, so path consistency will remove the tuple {x1 = v1, x2

= v2} from the constraint over {x1, x2}. In other words, path consistency removes
any tuple from a binary constraint that would not have support from a constraint
over a superset of 3 variables. With n variables and a maximum domain size of k,
path consistency can be enforced in O(n5k5) time using the basic algorithm (Dechter
2003). Analogously to AC, it is possible to use a queue like AC-3 to speed up this
process to O(n3k5) time (Dechter 2003) or to use a counting scheme like AC-4 to
speed it up to O(n3k3) time (Mohr and Henderson 1986). The counting-based
algorithm for path consistency is provably optimal in the worst case but the queue-
based algorithm is often faster in practice.

Path consistency can be generalized to include more variables in i-consistency (also
called k-consistency) (Freuder 1978). Path consistency ensures that a consistent
assignment of 2 variables can be extended to a consistent assignment of 3 variables;
i-consistency ensures that a consistent assignment of i-1 variables can be extended
to a consistent assignment of i variables. If not, i-consistency removes the tuple that
represents the partial assignment of i-1 variables from its constraint. In other words,
i-consistency removes any tuple from a constraint c1, where c1 is defined over i-1
variables, that does not have support from a constraint c2, where the scope of c2
extends the scope of c1 to an ith variable, and support from all constraints c3, where
the scope of c3 is a subset of c2 and contains the ith variable that is not in the scope
of c1. If the problem has n variables and a maximum domain size of k, i-consistency

Approved for public release; distribution is unlimited.

12

can be enforced using a basic algorithm in O((nk)2i2i) time (Dechter 2003). The
provably optimal algorithm for i-consistency uses a counting scheme like AC-4 and
runs in O((nk)i) time in the worst case (Dechter 2003).

Although very similar, 3-consistency (that is, i-consistency where i = 3) is not
identical to path consistency in all cases. These 2 forms of consistency are only
identical when there are no tertiary constraints (constraints over 3 variables), as in
a binary CSP, which only contains unary and binary constraints. If the CSP contains
any tertiary constraints, then a 3-consistency algorithm might remove tuples from
a binary constraint because of an inconsistency in the tertiary constraint, but a path
consistency algorithm would not. This means that 3-consistency is stronger than
path consistency when the CSP contains tertiary constraints.

The concept of i-consistency can be extended to global consistency (Freuder 1982),
which can determine whether or not a CSP is satisfiable. A set of constraints is
strong i-consistent if it is j-consistent for all j ≤ i. A set of constraints is globally
consistent if it is strong i-consistent and i is greater than the size of the scope of the
largest explicit constraint. For example, because 3-consistency and path
consistency are equivalent in binary CSPs, a binary CSP that is path consistent is
also globally consistent. Once the constraints of a CSP have been tightened to the
point of global consistency, it is possible to extract a solution from it in polynomial
time (Dechter 1992). Even an optimal global consistency algorithm, however,
requires an exponential amount of time in general (Cooper 1990).

Although global consistency is a sound and complete constraint propagation
technique, several other inference mechanisms have also been developed. For
example, generalized AC (Mohr and Masini 1988) is the inverse of i-consistency;
it removes any individual variable binding if it does not have support in a constraint
over i variables. As another example, a set of m constraints is relational (i,m)-
consistent (Dechter and van Beek 1995) if every consistent assignment to a subset
of i of their variables can be extended to an assignment to all of their variables that
satisfies all m constraints. If m is the maximum domain size of any variable in a
given CSP, the consistency of the CSP can be tested by imposing strong relational
(1,m) consistency.

For any of these given forms of consistency, it is possible to define a form of
directional consistency (Dechter and Pearl 1987). Directional consistency is useful
in algorithms that assign values to variables in sequence, such as depth-first search
(see Section 3.1.3). Given an ordering over the variables of a CSP, and given a
consistent partial assignment over the first k variables in this ordering, directional
consistency only enforces the form of consistency on the constraints with one or
more unassigned variables in their scopes. Directional consistency can improve

Approved for public release; distribution is unlimited.

13

efficiency by ignoring constraints over the variables that are already assigned
values.

Generally speaking, solving a CSP through constraint propagation alone can be
very inefficient. The number of constraints (whether explicit or implicit) is
exponential in the number of variables in the CSP, and the number of tuples in a
constraint can be exponential in the number of variables in its scope. This means
that constraint propagation can potentially be even less efficient than brute-force
search. Many special classes of CSP have been identified for which special-purpose
constraint propagation techniques can be applied very effectively.

Unfortunately, many instances of CSP do not fall into any of these special classes.
Constraint propagation is most frequently used to improve the efficiency of the
methods described in the next few sections. For a survey of constraint propagation
techniques, see Bessière (2006).

3.1.3 Depth-First Search

Depth-first search (also called backtracking search) is a trial-and-error process by
which variables are assigned values one at a time. Given a finite-domain CSP, the
basic depth-first search algorithm operates by choosing an unassigned variable,
assigning a value to it, and checking the constraints for any inconsistencies. If the
current partial assignment violates any constraints, the algorithm backtracks by
unassigning the most recent variable binding and reassigning the variable to a
different value. If all of the constraints are satisfied, then another variable is chosen
for assignment, and the process is repeated until either all of the variables have been
assigned and a solution is produced, or all of the values of the first variable have
been tested and failed, proving that no solution exists.

Depth-first search organizes the set of partial assignments of a CSP into a tree
structure. Each vertex of this search tree represents a partial assignment, and each
branch represents the binding of one more value to a variable. The root of this
search tree represents the empty partial assignment, and each vertex below it
represents a partial assignment in which the number of variables that have been
assigned is equal to the length of the path from that vertex back to the root. The
leaves of this search tree represent complete assignments, and some of these leaves
represent solutions.

Like brute-force search, depth-first search is sound, complete, and systematic for
finite-domain CSPs. In fact, brute-force search could be described as a search
technique that bypasses the upper levels of the depth-first search tree and scans
through each of the leaves directly. Depth-first search makes use of the rest of the
search tree to help organize this process.

Approved for public release; distribution is unlimited.

14

Like any search algorithm, depth-first search must deal with a fundamental tradeoff.
The term “search” is employed to convey the fact that these algorithms must guess
where it should go to find a solution. Good guesses reduce the amount of searching
necessary to find a solution but more computation time is generally required to
make a good guess. The fundamental tradeoff of search is to balance the processing
time per guess against the total number of guesses that must be made to minimize
the overall search time. Each of the efficiency techniques described in the following
presents an option for dealing with this tradeoff.

As a depth-first search algorithm progresses, it is necessary to decide which
variable should be assigned a value next. A variable ordering heuristic is any rule
or method for making this decision. The most widely used variable ordering
heuristic is the most-constrained variable heuristic (also called the fail first
heuristic) (Haralick and Elliott 1980). This heuristic chooses the variable with the
fewest values to be tested remaining its domain. If several variables are tied by this
measure, the variable that appears in the most constraints with unassigned variables
is chosen. If the current partial assignment is a dead end (meaning it cannot be
extended to a solution), it will be necessary to test all of the values for at least one
variable, so choosing the variable with the fewest values will help discover this fact
with the least computation. If the current partial assignment is not a dead end, it
will be necessary to assign a value to every variable, so choosing the variable with
the tightest constraints will remove the most values from the domains of other
unassigned variables through constraint propagation (discussed in the following).
Smith and Grant (1998) have shown that the most-constrained variable heuristic
can lead to poor performance in some situations, so Beck et al. (2003) have
introduced the notion of promise to describe variable heuristics that attempt to
maximize the likelihood of success. For a comparison of variable ordering
heuristics see Gent et al. (1996).

After choosing a variable, it is necessary to choose a value to assign to that variable.
The most-common value-ordering heuristic is the least-constraining value heuristic
(Geelen 1992). This heuristic chooses the value that will remove the fewest tuples
from the constraints of unassigned variables. If the current partial assignment is a
dead end, it will be necessary to test all of the values to prove this, so the value
ordering will have no effect. If the current partial assignment is not a dead end, at
least one value must lead to a solution, so choosing the value that is least likely to
cause a constraint violation reduces the chance that it will be necessary to backtrack
and test the other values later. Because the value ordering only affects efficiency
when the current partial assignment is not a dead end, it generally has less of an
impact on efficiency than the variable ordering. For more recent work on value
ordering heuristics see Lecoutre et al. (2007).

Approved for public release; distribution is unlimited.

15

Once the chosen value has been assigned to the chosen variable, it is possible to
apply a form of directional consistency (see Section 3.1.2) to the resulting
constraint network to propagate the effects of that variable assignment. This often
results in the removal of values from the domains of unassigned variables that
would lead to constraint violations. Any value that is removed through constraint
propagation does not need to be tested during search, reducing the size of the search
tree. A constraint propagation technique can impose any type of consistency—
stronger forms of consistency require more processing time but can also prune more
values. If the form of consistency is strong enough, it is sometimes possible to
remove all of the values from the domain of an unassigned variable, proving that
the current partial assignment cannot be extended to a solution. The most common
forms of constraint propagation are forward checking (Haralick and Elliott 1980;
Dent and Mercer 1994) and maintaining arc consistency (Sabin and Freuder 1994).
See Section 7 of Bessière (2006) for a survey of constraint propagation techniques
in depth-first search.

Even the best variable and value ordering heuristics can be fooled into making bad
decisions for some problem instances. Random restarts can help to avoid this
situation by imposing a limit on the number of times the algorithm can backtrack.
When this limit is reached, the algorithm restarts and the limit is increased. If the
heuristics rely on random choices (to break ties, for example) or information that
was accumulated during the previous search attempt, a new sequence of variables
and values will be chosen. If the sequence is effective for the problem instance, it
will lead to a solution before the backtracking limit is reached. If not, the search
will be restarted, and the new sequence will hopefully be more effective. See
Gomes et al. (2000) for a discussion of random restarts.

When a constraint is violated or a dead end is identified, the basic depth-first search
algorithm backtracks over the most recent variable assignment to test a different
value. This form of backtracking is called chronological backtracking. Other forms
of backtracking are able to safely jump back over several variables without
sacrificing completeness. Graph-based backjumping (Dechter 1989) backtracks to
the last variable that shares a constraint with the conflict variable, skipping over
any variables that are unrelated. Conflict-directed backjumping (Prosser 1993)
keeps track of the variables that interfere with each other and is able to backtrack
all the way to the most recent variable that was definitely involved in the conflict.
Dynamic backtracking (Ginsberg and McAllester 1993) keeps track of even more
information, allowing it to backtrack as far as conflict-directed backjumping and
then reassign any variables that were unassigned during backtracking but were not
involved in the conflict. See Kondrak and van Beek (1997) for a comparison of
backtracking techniques.

Approved for public release; distribution is unlimited.

16

It is not uncommon for a depth-first search algorithm to encounter a conflict,
backtrack to test a different combination, and then encounter the exact same conflict
later on during search. In some instances, a considerable amount of search is
required to discover a conflict, so rediscovering the same conflict repeatedly can
waste a significant amount of time. Nogood recording (Schiex and Verfaillie 1994)
helps to avoid this waste of time by recording and conflicts as nogoods.

Definition 3-2. Nogood: This is a partial assignment that cannot be extended to a
solution. In other words, a nogood is a tuple that violates either an explicit or
implicit constraint.

In practice, it is generally necessary to record each nogood along with a
justification.

Definition 3-3. Justification: Given a nogood assignment A, some subset C’ of the
explicit constraints C makes it impossible to extend A to a solution. The justification
of nogood A is the subset of variables over which the constraints of C’ are defined.

Each time a depth-first search algorithm backtracks, the set of variable assignments
involved in the conflict is recorded as a nogood. As search continues, each new
assignment is compared with the set of nogoods. If a nogood is found that matches
the current partial assignment, the algorithm backtracks immediately without
continuing to search that branch of the tree. In other words, nogood recording is the
process of identifying implicit constraints and listing them explicitly. In practice,
the number of nogoods identified can quickly exceed the space available to store
them, so the largest ones are discarded because they require the most storage space
and match the fewest partial assignments.

Depth-first search is often the best approach for problem domains in which it is
unclear whether or not a solution exists. The algorithm is sound and complete, so it
is guaranteed to prove whether or not the problem has a solution. Additionally, the
variety of techniques available to enhance the algorithm can make it much more
efficient than either brute-force search or constraint propagation. Unfortunately, it
is generally difficult to identify the combination of techniques that will lead to the
best efficiency of depth-first search for any specific problem domain. Practitioners
often implement several different efficiency techniques and compare the run times
of each combination over a representative set of test problems. For example,
Bessière and Régin (1996) found that maintaining AC combined with conflict-
directed backjumping does not significantly outperform maintaining AC alone. On
the other hand, Narendra et al. (2000) found that maintaining AC can be improved
when combined with dynamic backtracking, and Chen and van Beek (2001) found

Approved for public release; distribution is unlimited.

17

that conflict-directed backjumping can be improved when combined with
generalized AC.

As with the general form of a finite-domain CSP, an instance of SAT can be solved
with depth-first search and the efficiency techniques described in the previous
section. The special form of the SAT representation, however, allows for several
other techniques that can improve performance even further. For example, after
assigning a value to a variable, Boolean propagation operates by removing all of
the clauses that contain a literal that is equivalent to the assignment (because these
clauses are satisfied) and all of the literals that are the negation of this assignment
from any clauses that contain them (because these literals cannot satisfy their
respective clauses). If all of the literals have been removed from a clause, it is
impossible to satisfy the clause given the current partial assignment, so the
algorithm must backtrack. Unit propagation (Zhang and Stickel 1996) improves the
efficiency of Boolean propagation by checking the number of literals that remain
in each clause every time a literal is removed. If only one literal remains, the
assignment that matches this literal is the only way to satisfy the clause, so unit
propagation makes this assignment and adds it to a queue to be processed before
the search continues. The Davis-Putnam-Logemann-Loveland (DPLL, Davis et al.
1962) algorithm applied unit propagation to great effect and serves as the basis of
many modern SAT solvers.

Recent advances in SAT have increased efficiency significantly. Notably, a SAT
solver called Chaff (Moskewicz et al. 2001), an extension of DPLL, introduced 2
new techniques. First, the 2 watched literals scheme speeds up unit propagation by
identifying unit clauses very quickly. Second, the Variable State Independent
Decaying Sums variable-ordering heuristic employs a clever counting scheme to
select variables that appear in the most nogood clauses (this is another example of
the most-constrained variable heuristic). Een and Sörensson (2003) combined state-
of-the-art techniques such as these into a single, compact, highly efficient, and
freely available SAT solver called MiniSAT. Even though MiniSAT is
implemented in only 600 lines of C++, it is competitive with any of the most
efficient SAT solvers, many of which are tens of thousands of lines of code.
Because of the efficiency improvements provided by such systems, it is not
uncommon to solve a finite-domain CSP by converting the problem to an instance
of SAT, solving it using these specialized techniques, and then converting the
solution back to the original CSP representation. See Dixon et al. (2004) for a
survey of SAT techniques.

Approved for public release; distribution is unlimited.

18

3.1.4 Local Search

Each of the aforementioned algorithms solves the CSP through some form of
systematic search. Local search departs from this approach, opting instead for a
nonsystematic search through the space of complete assignments. A local search
algorithm begins by generating one or more complete (but possibly inconsistent)
assignments. Each assignment is compared with constraints, and if any constraints
are violated the assignment is modified. This process repeats until a solution is
found, the available time is exceeded, or a prespecified number of assignments have
been tested.

As a local search algorithm progresses, it is possible that it will consider the same
complete assignment more than once, which means that local search is not
systematic. If a solution exists, but a local search algorithm cannot find it before
the limit on time or the number of assignments tested is exceeded, the algorithm
will not produce the correct result, which means that (when such limits are
imposed) local search is not sound. Alternatively, if no limits are imposed, a local
search algorithm could search the same subset of complete assignments repeatedly
without ever terminating, so (without any limits imposed) local search is not
complete. Because a local search algorithm cannot be both sound and complete, it
is impossible for local search to prove that no solution exists for a given instance
of CSP. The effectiveness of local search therefore increases with the number
solutions to the given problem.

It is interesting to compare the characteristics of local search to those of brute-force
search and depth-first search. Local search and brute-force search both explore the
space of complete assignments while depth-first search explores the space of partial
assignments. Depth-first search and local search must both make heuristic guesses
to decide where to explore next while brute-force search does not. Both brute-force
and depth-first search are sound, complete, and systematic while local search is not
systematic and either not sound or not complete for general CSPs.

The central idea behind local search is to attempt to “repair” an assignment by
changing the value of one or more variables. By repeatedly repairing more and
more of the constraint violations, the algorithm might eventually be able to find a
complete assignment that does not violate any constraints. Each local-search
algorithm must therefore define the set of possible changes that could be made to
an assignment along with a method of deciding which change to make. Depth-first
search imposes tight restrictions on the set of partial assignments to consider next,
retaining soundness and completeness at the possible expense of efficiency. Local
search does not impose such tight restrictions, so soundness or completeness is
sacrificed in the hopes of improving efficiency.

Approved for public release; distribution is unlimited.

19

Like depth-first search, local search must consider the same fundamental tradeoff
of any search algorithm: Making a better guess as to where to search next requires
more time per decision but possibly reduces the number of decisions that must be
made. To discuss this tradeoff from a theoretical perspective, it is helpful to
describe the search space of a local-search algorithm as a graph. In this local-search
graph, each vertex represents a complete assignment and each edge represents a
change from one assignment to another. Given a complete assignment that is
represented by a vertex v, the neighborhood of that assignment is the set of complete
assignments that are represented by vertices that are adjacent to v. In this graph, a
local-search algorithm moves from one vertex to another until it finds one that
represents a solution.

Once the neighborhood is known, the local-search algorithm must choose which of
its neighbors to move to next. The problem lies in figuring out which neighbor will
bring the search one step closer to a solution that might be many steps away. Local-
search algorithms generally favor neighbors that improve the complete assignment
the most in hopes that these are the most likely to lead the search toward the closest
solution. This is accomplished by defining an evaluation function that ranks each
assignment. Maximizing evaluation functions assign a score to each assignment
that reflects how closely the assignment matches a solution, so a higher value is
better. Minimizing evaluation functions assign a distance to each assignment that
reflects the amount of difference between the assignment and a solution, so a lower
value is better. Whether the evaluation function is a maximizing or minimizing
function, the same set of local-search techniques can be applied.

Based on the local-search graph and the evaluation function, search algorithms are
often discussed in terms of a landscape metaphor, in which each complete
assignment lies on the surface of the land. The graph of neighbors defines where
each assignment is located relative to the others, similar to coordinates of latitude
and longitude. Carrying this metaphor forward, the evaluation function then defines
the altitude of each assignment. For example, if a minimizing evaluation function
is used, assignments that violate many constraints would be found at high altitudes,
assignments that violate fewer constraints would be found at lower altitudes, and
solutions would be found at the lowest altitude possible.

The landscape metaphor leads to terminology that is found throughout the literature
on local search. A local optimum is a region of the search space that is surrounded
by assignments with values that are worse according to the evaluation function. A
local optimum can be problematic because it can cause a local-search algorithm to
repeatedly test the same few assignments without moving away to find a solution.
A plateau is a region with little variance between nearby assignments according to

Approved for public release; distribution is unlimited.

20

the evaluation function. When a local-search algorithm encounters a plateau, it must
decide which direction to move based on sparse information, which can lead to
aimless wandering over the search space.

As will be discussed in the following, the landscape metaphor carries over to
descriptions of how different local-search algorithms operate with terms such as
hill climbing and random walk. Local-search algorithms can generally be grouped
into 3 categories: greedy, random, and genetic.

A greedy local-search algorithm (Selman and Kautz 1993) attempts to exploit local
information to the fullest by always choosing a neighbor with the best evaluation.
The reasoning behind this approach is that all of the constraint violations must be
repaired to find a solution, so the fastest way to find a solution is to repair as many
conflicts as possible at each step. Greedy local search is also known as hill-climbing
when a maximizing evaluation function is used and as steepest descent when a
minimizing evaluation function is used. The Min-Conflicts heuristic (Minton
et al. 1992) is a well-known type of greedy local search that has been successfully
applied to a variety of domains. The Min-Conflicts heuristic randomly chooses a
variable that is involved in a conflict and then reassigns that variable to the value
that minimizes the number of constraint violations. In other words, Min-Conflicts
restricts its set of neighbors to those of a randomly chosen variable and then chooses
a neighbor greedily from that set. GSAT (Selman et al. 1992, Selman and Kautz
1993) is a greedy search algorithm that solves an instance of SAT by flipping the
value of the variable that will increase the number of satisfied clauses the most.

A GSAT can have difficulty when it encounters various features of the search space
landscape. Plateau search (Hampson and Kibler 1993) allows the algorithm to move
to assignments of equal valuation when none of the neighbors has a worse
evaluation. This allows the algorithm to cross a plateau instead of stopping. Several
techniques exist to escape local optima. Random restarts can be applied to start the
search from a randomly chosen new assignment, similar to their use in depth-first
search (Schöning 1999). Tabu search (Glover and Laguna 1993) keeps a list of
recent variable-value bindings and disallows them to prevent backwards moves to
assignments that have already been visited. Constraint weighting (Thronton 2000;
Selman and Kautz 1993) calculates the distance of each assignment as a weighted
sum of constraint violations and increases the weight of each constraint each time
it is violated. If the same constraint is violated repeatedly, its weight will increase
and the algorithm will move to an assignment that satisfies it.

A random local-search algorithm employs random processes to increase the
likelihood that it will find a solution. These algorithms are also called random-walk
algorithms because they mimic a person walking randomly over the search space

Approved for public release; distribution is unlimited.

21

landscape. The basic form of a random local-search algorithm is called ε-greedy, in
which a neighbor is chosen greedily with probability ε and randomly with
probability 1 – ε. When ε = 1, ε-greedy is equivalent to greedy search, and when
ε = 0, ε-greedy is completely random. By choosing ε somewhere between 0 and 1,
the algorithm can take advantage of greedy moves to guide the search toward a
solution and random moves to help keep it out of local optima. A variant of ε-
greedy called simulated annealing (Kirkpatrick et al. 1983) slowly increases ε to
eventually converge on a solution. Hao and Pannier (1998) present a comparison
of simulated annealing and tabu search in which they find that tabu search is
superior on a set of randomly generated problems.

Random local-search algorithms can also be applied to solve instances of SAT. For
example, WalkSAT (Selman et al. 1993) is a combination of ε-greedy and GSAT.
WalkSAT applies the logic that a solution must satisfy all of the clauses but each
clause only needs to be satisfied by a single literal. To choose the variable whose
value will be flipped, WalkSAT begins by considering the set of variables that
appear in unsatisfied clauses. WalkSAT then attempts to retain as many satisfied
clauses as possible by restricting the set of possible variables to those that, when
flipped, will not cause any new clauses to become unsatisfied. If more than one
variable matches these criteria, WalkSAT greedily chooses the variable from this
set that will repair the largest number of unsatisfied clauses. If no variable matches
these criteria, then, with probability ε, WalkSAT greedily chooses the variable that
will increase the number of satisfied clauses the most (like GSAT), and with
probability 1 – ε, WalkSAT chooses randomly.

A genetic algorithm attempts to mimic biological processes to cause a solution to
evolve out of a population. A genetic algorithm begins by generating an initial
population. When solving a CSP, each individual of the population represents a
complete assignment. Each individual is evaluated according to a fitness function,
which is simply another name for an evaluation function, and given a fitness score.
Based on these fitness scores, a subset of individuals is chosen to survive and
reproduce the next generation through the process of selection; Blickle and Thiele
(1996) compare several selection schemes. Over time, the traits of the most
successful individuals are more likely to be passed on and combined in future
generations, eventually leading to a solution.

To reproduce, 2 individuals are chosen randomly to be parents and the assignments
they represent are copied. Next, a random crossover point is chosen to partition
both of these copied assignments. For example, if the CSP contains 10 variables
and the random crossover point is 3, each complete assignment will be split into 2
partial assignments, one containing the first 3 variable assignments and the other

Approved for public release; distribution is unlimited.

22

containing the last 7 variable assignments. Two offspring individuals can then be
produced through the process of recombination, which combines the first partial
assignment copied from one parent with the second partial assignment copied from
the second parent. After recombination, random mutation randomly reassigns a
subset of the variables of each offspring.

Like other forms of local search, genetic algorithms must incorporate methods to
escape regions that are locally optimal. As a genetic algorithm progresses, the fittest
individuals survive and reproduce. Over time, the traits of a small number of
exceptionally fit individuals can be spread throughout the population. As this
happens, the population becomes more homogeneous and the algorithm can get
trapped at a local optimum. Random mutation can only do so much to avoid this
situation, so other methods have been developed. Random immigrants (Tinós and
Yang 2007) are new random assignments that can be incorporated into the
population to increase genetic diversity. Co-evolving species (Morrison 1998) must
compete with each other but cannot reproduce with each other. Vrajitoru (2002)
divides the population into genders, preventing each individual from reproducing
with the half of the population and slowing the spread of genetic traits. See
Michalewicz (1995) or Deb (1997) for a survey of genetic algorithms.

Local search is most effective either when a large portion of the complete
assignments are solutions, offering many opportunities for the search process to
encounter one, or when local features of the search space give an accurate
indication of the correct direction to move to find a solution. Local search can also
be successfully combined with other techniques to solve CSPs. For example,
Jussien and Lhomme (2002) apply constraint propagation to local search to improve
efficiency. Chatzikokolakis et al. (2004) describe an algorithm that begins with
depth-first search, but when a conflict is encountered, it repairs the conflict with
local search instead of backtracking. The main weakness of local search is its
incompleteness; if a solution exists, there is no guarantee of finding it, and if no
solution exists, there is no way to prove it. The main strength of local search is its
application to constraint optimization, as discussed in the next section.

3.2 Constraint Optimization Algorithms

Before jumping into constraint optimization techniques, it is worth discussing a
metric commonly used to compare COP algorithms: anytime performance. An
anytime algorithm can provide a response at any point in time and are useful when
the time at which a solution will be requested is unknown. Many COP algorithms
can act as anytime algorithms because they can produce a suboptimal solution

Approved for public release; distribution is unlimited.

23

extremely quickly and then improve on it as time permits. The anytime performance
of an anytime algorithm is the way in which solution quality improves over time.

Many of the algorithms and techniques used for constraint optimization are variants
of those used for constraint satisfaction. Here these techniques are categorized as
constraint propagation, depth-first search, and local search.

3.2.1 Constraint Propagation

Some of the earliest use of constraint propagation in optimization was by Rosenfeld
et al. (1976), who used a relaxed form of AC when solving FCSP. The form of AC
that they used is relaxed because constraint propagation is generally harder for
optimization problems than for satisfaction problems. Schiex et al. (1995) prove
that AC is NP-complete for Max-CSP and that AC works for VCSP only when the
combination operator is idempotent. A relation (or operator) ⊗ is idempotent if,
given a set S and any element e ∈ S, e ⊗ e = e. Bistarelli et al. (1996) provide
algorithms for i-consistency of VCSP and SCSP but these assume that combination
is idempotent. Schiex (2000) defines a form of AC for VCSP that allows for
nonidempotent combination operators, terminates, and produces equivalent
problems; this method only gives up the uniqueness property of AC. Because
constraint propagation is so difficult when applied to optimization, it is rarely
considered an option for solving a COP alone. Instead, constraint propagation is
usually applied to enhance the efficiency of optimization algorithms based on
search.

3.2.2 Depth-First Search

Depth-first search is one of the common approaches to solving optimization
problems. The application of depth-first search to COP is very similar to its
application to CSP. Consider an instance of COP that uses the partial ordering ≼O.
Ignoring the soft constraints, a depth-first search algorithm can solve the hard
constraints as an instance of CSP. Let A be an assignment identified by this depth-
first search that satisfies all of the hard constraints. A is recorded as the best solution
found so far. At this point, there is no guarantee that A is an optimal solution, so the
search continues by backtracking from A and building on the same search tree. Let
A’ be the next solution found that satisfies all of the hard constraints. If A’ ≼O A,
meaning that A’ is preferred to A, then A’ replaces A as the best solution found so
far. The process continues until the search space is exhausted. Once the search
space is exhausted, the best solution found is guaranteed to be optimal.

The efficiency of depth-first search can be improved using several techniques. One
such technique is branch-and-bound. Branch-and-bound (e.g., Black 2005) is a

Approved for public release; distribution is unlimited.

24

process of pruning branches from the depth-first search tree based on estimated
upper and lower bounds around the preference value of the optimal solution. As
depth-first search progresses, branch-and-bound uses a heuristic to estimate the best
possible preference value that can be achieved by extending the current partial
assignment. An admissible heuristic is one that is guaranteed never to provide an
estimated preference value that is worse than what is really possible.

For example, when solving an instance of Partial Max-CSP, a partial assignment A
might have already satisfied 4 soft constraints out of 10 but violated one. Assume
that, in reality, it is possible to extend A to a complete assignment that satisfies 3
more soft constraints, so this solution would satisfy a total of 7 soft constraints and
violate 3. Since it is possible to extend A and only violate 3 soft constraints, an
admissible heuristic cannot return a preference value greater than 3. A simple
admissible heuristic might assume that it is possible to extend A to a complete
assignment without violating any additional soft constraints, so it would estimate a
preference value of 1 (because 1 soft constraint is already violated). A more-
sophisticated heuristic could perform additional reasoning such as constraint
propagation and might estimate a preference value of 2.

When minimizing the preference value (as in the previous example), an admissible
heuristic produces a lower bound on a partial assignment. A lower bound of a partial
assignment A is a preference value lb(A) such that the preference value of every
complete extension of A is greater than (meaning less preferred) or equal to lb(A).
It is also possible to estimate an upper bound on the preference value of an optimal
solution. An upper bound is a preference value ub such that the preference value of
an optimal solution is less than or equal to ub. As with lower bounds, heuristics
exist for estimating the upper bound of a problem, and an admissible heuristic is
guaranteed to always err on the side of safety. One basic admissible upper-bound
heuristic is to set the upper bound equal to the preference value of the best solution
found so far.

The branch-and-bound algorithm uses upper and lower bounds to speed up depth-
first search optimization as follows. First, the upper-bound heuristic estimates an
upper bound for the problem. Depth-first search then begins by assigning a value
to a variable and creating a partial assignment. The lower-bound heuristic then
estimates a lower bound for the partial assignment. The combination of the upper-
and lower-bound estimates gives the branch-and-bound algorithm its power: If the
lower bound of a partial assignment is greater than the upper bound of the problem,
it is impossible to extend that partial assignment to an optimal solution, so depth-
first search can backtrack immediately. As better solutions are found, the upper

Approved for public release; distribution is unlimited.

25

bound can continue to decrease, allowing for earlier pruning and improved
efficiency as the search progresses.

For example, assume the branch-and-bound algorithm is given a Partial Max-CSP
with 50 soft constraints. An admissible upper-bound heuristic could start with ub =
51 because it is impossible to violate that many soft constraints. The depth-first
search process finds a solution that violates 27 soft constraints, so ub is reduced to
27. As search continues, it produces a partial assignment that violates only 25 soft
constraints, but the admissible lower-bound heuristic is powerful enough to
estimate that any complete extension will violate at least 30 soft constraints. Since
it is impossible to extend this partial assignment to a solution that is better than the
one already found, the algorithm can prune this branch and search elsewhere in the
tree.

This example demonstrates why the heuristics are so important to branch-and-
bound search. Branch-and-bound can backtrack whenever the upper and lower
bounds cross. This means that decreasing the upper bound and increasing the lower
bound will make them cross sooner, allowing for earlier pruning and improved
efficiency. It is important to maintain admissibility, however, because the use of an
inadmissible heuristic might cause branch-and-bound to backtrack too early and
miss an optimal solution. Branch-and-bound is complete only if the upper- and
lower-bound heuristics are both admissible.

Because of the importance of heuristics in branch-and-bound search, a significant
amount of COP research focuses on identifying heuristics that are both powerful
and admissible. Much of this research attempts to improve lower-bound heuristics
by incorporating constraint propagation techniques into branch-and-bound
algorithms. Bistarelli et al. (1996) discuss incorporating soft consistency checks
into branch-and-bound for binary VCSP. Larrosa and Schiex (2004) present
efficient algorithms for maintaining AC in WCSP and WSAT. Cooper et al. (2007)
present a new method for soft AC in WCSP that improves on existing lower bound
heuristics. Dago and Verfaillie (1996) define valued nogoods, which extend the
definition of nogoods used for CSP and make it possible to improve the quality of
lower-bound estimates during the course of branch-and-bound search.

Other research focuses on combining techniques into larger COP solvers that
incorporate branch-and-bound search. Fu and Malik (2006) present 2 complete
Partial Max-SAT algorithms based on Chaff. Heras et al. (2007) extend the
MiniSAT solver to handle Max-SAT optimization in a solver they call
MiniMaxSat. Bouveret et al. (2006) review a set of techniques of Max-CSP solvers
submitted to the 2006 Max-CSP competition.

Approved for public release; distribution is unlimited.

26

Assuming admissible heuristics, branch-and-bound search is sound and complete.
Because it keeps finding better solutions and can be combined with efficiency
techniques, it offers fairly good anytime performance for many applications. It is
especially well-suited for partial constraint optimizations in which it is possible that
the constraints cannot all be satisfied simultaneously.

3.2.3 Local Search

Local search is a very popular approach to COP. Recall that when using local search
to solve a CSP, an evaluation function ranks each assignment based on how closely
it matches a solution. To use local search to solve a COP, one need only design the
evaluation function to implement the preference operator. In other words, when
solving a CSP, the evaluation function of a local-search algorithm measures how
close the assignment is to satisfying all of the constraints. When solving a COP, the
evaluation function of a local-search algorithm measures how preferred the
assignment is. The semantics of the evaluation function change but the local-search
algorithm does not. Local search is an appealing option because the anytime
performance is generally very good, but because it is incomplete, local search is not
guaranteed to produce a globally optimal solution.

Greedy- and random-search algorithms have been applied to many types of
optimization problems. Talbi et al. (1997) use tabu search to solve large
optimization problems in a parallel environment. Daum and Menzel (2002) perform
natural language parsing by casting the problem as WCSP and solving it with local
search. Kautz et al. (1997) present MaxWalkSAT, an extension of the WalkSAT
algorithm (Selman et al. 1993), which is designed to solve instances of Max-SAT.

Genetic algorithms are generally the method of choice when solving instances of
MOP. Because the objectives of an instance of MOP can conflict with one another,
a variety of Pareto optimal solutions is often preferable to a single solution. Greedy-
and random-local-search algorithms only move from one assignment to a neighbor,
so they focus on one small part of the search space at a time. Genetic algorithms,
on the other hand, search a variety of assignments simultaneously across the
population, making them ideal for quickly approximating the Pareto frontier. Van
Veldhuizen and Lamont (2000) present a theoretical review of methods of
evolutionary algorithms applied to MOP, while Zitzler et al. (2000) present an
empirical comparison. Some research has combined depth-first search and local
search into hybrid algorithms for constraint optimization. Sosič and Wilby (1994)
demonstrate that a hybrid approach produces better anytime performance than
either depth-first search or local search alone in instances of large traveling
salesman optimization problems. Sachenbacher and Williams (2005) present a
method that exploits plateaus in the search space by reformulating VCSPs into a

Approved for public release; distribution is unlimited.

27

combination of hard and soft constraints, separating the search into distinct
satisfaction and optimization phases. Hang et al. (2007) discuss the use of local
search to improve approximate Max-CSP algorithms.

Finally, several methods have been explored for improving efficiency when solving
one type of COP by converting the problem to another type. For example, de Givry
et al. (2003) describe methods for solving Max-SAT by converting it to WCSP. On
the other hand, Ansótegui et al. (2007) describe a method for solving WCSP by
converting it to Max-SAT. Argelich et al. (2008) present several efficient methods
for encoding Max-CSP as Partial Max-SAT.

4. Conclusions

This report defines several different types of constraint satisfaction and
optimization problems, explains the relationships between them, and details
solution approaches and techniques. It cites numerous references for the interested
reader to find even more detailed information about the topics discussed here.

Approved for public release; distribution is unlimited.

28

5. References

Ansótegui C, Bonet ML, Levy J, Manyà F. The logic behind weighted CSP. In:
Sangal R, Mehta H, Bagga RK, editors. IJCAI’07. Proceedings of the 20th
International Joint Conference on Artificial Intelligence; 2007 Jan.;
Hyderabad, India. San Francisco (CA): Morgan Kaufmann Publishers Inc.;
c2007. p. 32–37.

Argelich J, Cabiscol A, Lynce I, Manyà F. Encoding Max-CSP into partial Max-
SAT. Presented at the 38th International Symposium on Multiple Valued
Logic; 2008 May 22–23; Dallas, TX.

Barták R, Tomáš M, Hana R. A new approach to modeling and solving minimal
perturbation problems. In: Apt KR, Fages F, Rossi F, Szeredi P, Vancza J,
editors. Recent advances in constraints: lecture notes in computer science
3010. Berlin (Germany): Springer; 2003. p. 233–249.

Beck CJ, Prosser P, Wallace RJ. Toward understanding variable ordering heuristics
for constraint satisfaction problems. Presented at the 14th Irish Artificial
Intelligence and Cognitive Science Conference; 2003; Dublin, Ireland.

Bessière C. Constraint propagation. Montpellier (France): Centre d’Ecologie
Fonctonnelle & Evolutive (CNRS), University of Montpellier, France; 2006.
Technical Report No.: LIRMM 06020.

Bessière C, Régin J-C. MAC and combined heuristics: two reasons to forsake FC
(and CBJ?) on hard problems. CP’96. In: Freuder EG, editor. Proceedings of
the International Conference on Principles and Practice of Constraint
Programming; 1996 Aug 19–22; Cambridge, MA. Berlin (Germany):
Springer; c1996. p. 61–75.

Bistarelli S, Fargier H, Montanari U, Rossi F, Schiex T, Verfaillie G. Semiring-
based CSPs and valued CSPs: basic properties and comparison. In: Freuder E,
Maher M, Jampel M, editors. Over-constrained systems. Paris (France): INRA
Editions; 1996. p. 111–150.

Black PE. Branch-and-bound. US national institute of standards and technology
dictionary of algorithms and data structures; 2005 [accessed 2008 Oct 16].
http://www.nist.gov/dads /HTML/branchNbound.html.

Blickle T, Thiele, L. A comparison of selection schemes used in evolutionary
algorithms. Evolutionary Computation. 1996;4(4):361–394.

Approved for public release; distribution is unlimited.

29

Bouveret S, de Givry S, Heras F, Larrosa J, Rollon E, Sanchez M, Ytnicki M. Max-
CSP competition 2006: toolbar/toolbar2 solver brief description. Presented at
the 3rd International Workshop on Constraint Propagation and
Implementation; 2006; Nantes, France.

Chatzikokolakis K, Boukeas G, Stamatopoulos P. Construction and repair: a hybrid
approach to search in CSPs. Presented at the 3rd Hellenic Conference on
Artificial Intelligence; 2004 May 5–8; Samos, Greece.

Chen X, van Beek P. Conflict-directed backjumping. Journal of Artificial
Intelligence Research. 2001;14:53–81.

Cooper MC. An optimal k-consistency algorithm. Artificial Intelligence.
1990;41(1):89–95.

Cooper MC, de Givry S, Schiex T. Optimal soft arc consistency. IJCAI’07.
Proceedings of the 20th International Joint Conference on Artificial
Intelligence; 2007 Jan 6–12; Hyderabad, India. San Francisco (CA): Morgan
Kaufmann Publishers; c2007. p. 68–73.

Creignou N, Khanna S, Sudan M. Complexity classifications of Boolean constraint
satisfaction problems. Philadelphia (PA): SIAM Press; 2001.

Dago P, Verfaillie G. Nogood recording for valued constraint satisfaction
problems. ICTAI’96. Proceedings of the 8th International Conference on Tools
with Artificial Intelligence; 1996 Nov; Toulouse, France. Washington (DC):
IEEE Computer Society; c1996. p. 132–139.

Daum M, Menzel W. Parsing natural language using guided local search. ECAI’02.
Proceedings of the 15th European Conference on Artificial Intelligence; 2002;
Lyon, France. Amsterdam (The Netherlands): IOS Press; c2002. p. 435–439.

Davis M, Logemann G, Loveland D. A machine program for theorem proving.
Communications of the ACM. 1962;5(7):394–397.

de Givry S, Larrosa J, Meseguer P, Schiex T. Solving Max-SAT as weighted CSP.
Lecture Notes in Computer Science. 2003;2833:363–376.

Deb K. Genetic algorithm in search and optimization: the technique and
applications. Presented at the International Workshop on Intelligent Systems
and Soft Computing; 1997; Aachen, Germany. p. 58–87.

Dechter R. Enhancement schemes for constraint processing: backjumping,
learning, and cutset decomposition. Artificial Inteligence. 1989;41:273–312.

Approved for public release; distribution is unlimited.

30

Dechter R. From local to global consistency. Artificial Intelligence. 1992;55,87–
107.

Dechter R. Constraint processing. San Francisco (CA): Morgan Kaufmann
Publishers; 2003.

Dechter R, Pearl J. Network-based heuristics for constraint-satisfaction problems.
Artificial Intelligence. 1987;34(1):1–38.

Dechter R, van Beek P. Local and global relational consistency. Theoretical
Computer Science. 1995;173(1):283–308.

Dent MJ, Mercer RE. Minimal forward checking. Proceedings of the 6th IEEE
International Conference on Tools with Artificial Intelligence; 1994 Nov
[accessed 2015 Nov 17].

 http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=1012. p. 432–
438.

Dixon HE, Ginsberg ML, Parkes AJ. Generalizing Boolean satisfiability:
background and survey of existing work. Journal of Artificial Intelligence
Research. 2004;24:193–243.

Een N, Sörensson N. An extensible SAT-solver. Proceedings of theory and
applications of satisfiability testing: lecture notes in computer science. Berlin
(Germany): Springer; 2003.

Fargier H, Lang J. Uncertainty in constraint satisfaction problems: a probabilistic
approach. In: Symbolic and quantitative approaches to reasoning and
uncertainty: lecture notes in computer science. Berlin (Germany): Springer;
2005. Vol. 747; p. 97–104.

Freuder EC. Synthesizing constraint expressions. Communications of the ACM.
1978;21:958–966.

Freuder EC. A sufficient condition for backtrack-free search. Journal of the ACM.
1982;29:24–32.

Freuder EC, Wallace RJ. Partial constraint satisfaction. Artificial Intelligence.
1992;58(1–3):21–70.

Fu Z, Malik S. On solving the partial MAX-SAT problem. Proceedings of theory
and applications of satisfiability testing: lecture notes in computer science.
Vol. 4121. Berlin (Germany): Springer; 2006. p. 252–265.

Approved for public release; distribution is unlimited.

31

Geelen PA. Dual viewpoint heuristics for binary constraint satisfaction problems.
ECAI ’92. In: Kautz H, Selman B, editors. Proceedings of the 10th European
Conference on Artificial Intelligence; 1992 Aug 3–7; Vienna, Austria. New
York (NY): John Wiley and Sons; c1992. p. 31–35.

Gent IP, MacIntyre E, Prosser P, Smith BM, Walsh T. An empirical study of
dynamic variable ordering heuristics for constraint satisfaction problems.
Proceedings of CP96. Berlin (Germany): Springer; 1996. p. 179–193.

Ginsberg ML, McAllester DA. Dynamic backtracking. Journal of Artificial
Intelligence Research. 1993;1:25–46.

Glover F, Laguna M. Tabu search. In: Reeves C, editor. Modern heuristic
techniques for combinatorial problems. Oxford (England): Blackwell
Scientific Publishing; 1993. p. 70–141.

Gomes CP, Selman B, Crato N, Kautz H. Heavy-tailed phenomena in satisfiability
and constraint satisfaction problems. Journal of Automated Reasoning.
2000;24(1–2):67–100.

Hampson S, Kibler D. Large plateaus and plateau search in Boolean satisfiability
problems: when to give up searching and start again. In: DIMACS series in
discrete mathematics and theoretical computer science, Vol. 26. Providence
(RI): American Mathematical Society; 1993 .p. 437–455.

Hang CD, Abdelmeged A, Rinehart D, Lieberherr KJ. The promise of polynomial-
based local search to boost Boolean MAX-CSP solvers. Presented at the 4th
International Workshop on Local Search Techniques in Constraint
Satisfaction; 2007 Sep 23; Providence, RI.

Hao J-K, Pannier J. Simulated annealing and tabu search for constraint solving.
Presented at the 5th International Symposium on Artificial Intelligence and
Mathematics; 1998 Jan; Ft. Lauderdale, FL.

Haralick RM, Elliott GL. Increasing tree search efficiency for constraint
satisfaction problems. Artificial Intelligence. 1980;14:263–313.

Heras F, Larrosa J, Oliveras A. MiniMaxSat: A new weighted Max-SAT solver.
SAT’07. Proceedings of the 10th International Conference on Theory and
Applications of Satisfiability Testing; 2007 May 28–31; Lisbon, Portugal.
Berlin (Germany): Springer; c2007. p. 41–55.

Jussien N, Lhomme O. Local search with constraint propagation and conflict-based
heuristics. Artificial Intelligence. 2002;139:21–45.

Approved for public release; distribution is unlimited.

32

Kautz H, Selman B, Jiang Y. A general stochastic approach to solving problems
with hard and soft constraints. In: Dingzhu G, Du J, Pardalos P, editors. The
satisfiability problem: theory and applications. DIMACS series in discrete
mathematics and theoretical computer science. 1997;35:573–586.

Kirkpatrick S, Gelatt CD, Vecchi MP. Optimization by simulated annealing.
Science. 1983;13:671–680.

Kondrak G, van Beek P. A theoretical evaluation of selected backtracking
algorithms. Artificial Intelligence. 1997;89:541–547.

Larrosa J, Schiex T. Solving weighted CSP by maintaining arc consistency.
Artificial Intelligence. 2004;159(1–2):1–26.

Lecoutre C, Saïs L, Vion J. Using SAT encodings to derive CSP value ordering
heuristics. Journal on Satisfiability, Boolean Modeling and Computation.
2007;1:169–186.

Mackworth AK. Consistency in networks of relations. Artificial Intelligence.
1977;8(1):99–118.

Michalewicz Z. A survey of constraint handling techniques in evolutionary
computation methods. In: McDonnell J, Reynolds R, Fogel, D, editors.
Evolutionary programming: proceedings of the 4th Annual Conference on
Evolutionary Programming; 1995. Cambridge (MA): MIT Press; c1995.
p. 135–155.

Minton S, Johnston MD, Philips AB, Laird P. Minimizing conflicts: a heuristic
repair method for constraint-satisfaction and scheduling problems. Artificial
Intelligence.
1992;58(1–3):161–205.

Mohr R, Henderson TC. Arc and path consistency revised. Artificial Intelligence.
1986;28:225–233.

Mohr R, Masini G. Good old discrete relaxation. ECAI-88. Proceedings of the 8th
European Conference on Artificial Intelligence. London (UK): Pitman; 1988.
p. 651–656.

Montanari U. Networks of constraints: fundamental properties and applications to
picture processing. Information Science. 1974;7(66), 95–132.

Morrison J. Co-evolution and genetic algorithms [thesis]. [Ottawa (Canada)]:
Carleton University; 1988.

Approved for public release; distribution is unlimited.

33

Moskewicz MW, Madigan CF, Zhao Y, Zhang L, Malik S. Chaff: engineering an
efficient SAT solver. DAC’01. In: Rabaey J, editor. Proceedings of the 38th
Design Automation Conference; 2001 June 18–22; Las Vegas, NV. New York
(NY): ACM; c2001.

Narendra J, Debruyne R, Boizumault P. Maintaining arc-consistency within
dynamic backtracking. In: Principles and practice of constraint programming:
lecture notes in computer programming. Vol. 1894. Berlin (Germany):
Springer; 2000. p. 249–261.

Pareto V. Manuale d’economia politica. Milan (Italy): Societa Editrice Libaria;
1906.

Prosser P. Hybrid algorithms for the constraint satisfaction problem. Computational
Intelligence. 1993;9:268–299.

Rosenfeld A, Hummel R, Zucker S. Scene labeling by relaxation operations. IEEE
Transactions on Systems, Man, and Cybernetics. 1976;6:173–184.

Ruttkay Z. Fuzzy constraint satisfaction. Proceedings of the 3rd international
conference on fuzzy systems. Piscataway (NJ): IEEE Press; 1994. p. 1263–
1268.

Sabin D, Freuder E. Contradicting conventional wisdom in constraint satisfaction.
CP’94. In: Borning A, editor. Principles and practice of constraint
programming: lecture notes in computer science. Vol. 874. Berlin (Germany):
Springer; 1994.

Sachenbacher M, Williams BC. Solving soft constraints by separating optimization
and satisfiability. CP’05. In: van Beek P, editor. Principles and practice of
constraint programming: CP 2005. Berlin (Germany): Springer; 2005. p. 119–
132.

Sawaragi Y, Nakayama H, Tanino T. Theory of multiobjective optimization.
Mathematics in Science and Engineering. Orlando (FL): Academic Press Inc.;
1985.

Schiex T. Arc consistency for soft constraints. Artificial Intelligence. 2000:411–
424.

Schiex T, Verfaillie G. Nogood recording for static and dynamic constraint
satisfaction. International Journal of Artificial Intelligence Tools. 1994;3:48–
55.

Approved for public release; distribution is unlimited.

34

Schiex T, Fargier H, Verfaillie G. Valued constraint satisfaction problems: hard and
easy problems. In: IJCAI95: Proceedings of the 14th International Joint
Conference on Artificial Intelligence. Vol. 1. San Francisco (CA): Morgan
Kaufmann Publishers, Inc.; 1995. p. 631–637.

Schöning U. A probabilistic algorithm for k-SAT and constraint satisfaction
problems. FOCS ’99. Proceedings of the 40th Symposium on the Foundations
of Computer Science. Washington (DC): IEEE Computer Society; 1999. p.
410–414.

Selman B, Kautz H. An empirical study of greedy local search for satisfiability
testing. AAAI-93. Proceedings of the 11th National Conference on Artificial
Intelligence. Palo Alto (CA): AAAI; 1993. p. 46–51.

Selman B, Kautz H. Domain-independent extensions of GSAT: solving large
structured satisfiability problems [accessed 2015 Nov 17].
http://ijcai.org/Past%20Proceedings/IJCAI-93-VOL1/PDF/041.pdf.

Selman B, Kautz H, Cohen B. Local search strategies for satisfiability testing.
Cliques, coloring, and satisfiability: second DIMACS implementation
challenge. In: Johnson DS, Trick MA, editors. DIMACS series in discrete
mathematics and theoretical computer science. Vol. 26. Providence (RI):
American Mathematical Society, 1996.

Selman B, Levesque H, Mitchell D. A new method for solving hard satisfiability
problems. AAAI-92. Proceedings of the 10th National Conference on
Artificial Intelligence. Palo Alto (CA): AAAI; 1992. p. 440–446.

Smith BM, Grant SA. Trying harder to fail first. ECAI’98. In: Prade H, editor.
Proceedings of the 13th European Conference on Artificial Intelligence;
London (UK): Wiley; 1998. p. 249–253.

Sosič R, Wilby GD. Using the quality-time tradeoff in local optimization.
Proceedings of the 2nd Australia New Zealand Intelligent Information Systems
(ANZIIS) Conference; 1994. Piscataway (NJ): Institute of Electrical and
Electronics Engineers; c1994. p. 253–257.

Talbi EG, Hafidi Z, Geib J-M. Parallel adaptive tabu search for large optimization
problems. In: Vob S, Martello S, Osman IH, Roucairol C, editors. Meta-
heuristics: advances and trends in local search paradigms for optimization.
Berlin (Germany): Springer; 1999. p. 345–358.

Thronton JR. Constraint weighting local search for constraint satisfaction [thesis].
[Nathan (Australia)]: Griffith University; 2000.

Approved for public release; distribution is unlimited.

35

Tinós R, Yang S. A self-organizing random immigrants genetic algorithm for
dynamic optimization problems. Genetic Programming and Evolvable
Machines. 2007;8(3):255–286.

Van Veldhuizen DA, Lamont GB. Multiobjective evolutionary algorithms:
analyzing the state-of-the-art. Evolutionary Computation. 2000;8(2):125–147.

Vrajitoru D. Simulating gender separation with genetic algorithms. GECCO’02.
Proceedings of the Genetic and Evolutionary Computation Conference; 2002
July 9–13; New York, NY. Burlington (MA): Morgan Kaufmann Publishers;
c2002.

Wallace M. Practical applications of constraint programming. Constraints: An
International Journal. 1996;1:139–168.

Zhang H, Stickel M. An efficient algorithm for unit-propagation. Proceedings of
the Fourth International Symposium on Artificial Intelligence and
Mathematics; 1996 Jan 3–5; Ft. Lauderdale, FL.

Zitzler E, Deb K, Thiele L. Comparison of multiobjective evolutionary algorithms:
empirical results. Evolutionary Computation. 2000;8:173–195.

Approved for public release; distribution is unlimited.

36

List of Symbols, Abbreviations, and Acronyms

AC arc consistency

AOF aggregate objective function

APX approximately

COP Constraint Optimization Problem

CSP Constraint Satisfaction Problem

DPLL Davis-Putnam-Logemann-Loveland

FCSP Fuzzy CSP

GSAT Greedy SAT

MOP Multiobjective Optimization Problem

NP nondeterministic polynomial

PCSP Probabilistic CSP

SAT satisfiability

SCSP Semiring-based CSP

VCSP Valued CSP

WCSP Weighted CSP

WP Max-SAT Weighted Partial Max-SAT

WSAT Weighted SAT

Approved for public release; distribution is unlimited.

37

 1 DEFENSE TECHNICAL
 (PDF) INFORMATION CTR
 DTIC OCA

 2 DIRECTOR
 (PDF) US ARMY RESEARCH LAB
 RDRL CIO LL
 IMAL HRA MAIL & RECORDS MGMT

 1 GOVT PRINTG OFC
 (PDF) A MALHOTRA

 1 DIR USARL
 (PDF) RDRL CIH S
 P JUNGWIRTH

Approved for public release; distribution is unlimited.

38

INTENTIONALLY LEFT BLANK.

	1. Introduction
	2. Constraint Optimization Problems
	2.1 Constraint Satisfaction Problems
	2.2 Constraint Optimization Problems

	3. Constraint Optimization Algorithms
	3.1 Constraint Satisfaction Algorithms
	3.1.1 Brute-Force search
	3.1.2 Constraint Propagation
	3.1.3 Depth-First Search
	3.1.4 Local Search

	3.2 Constraint Optimization Algorithms
	3.2.1 Constraint Propagation
	3.2.2 Depth-First Search
	3.2.3 Local Search

	4. Conclusions
	5. References
	List of Symbols, Abbreviations, and Acronyms

